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1. Introduction 
 GARCH models, characterised by autoregressive dependencies in the condi-
tional variance equation, are used in modelling financial time series on account 
of the variance grouping phenomenon they demonstrate. In turn, Markov-
switching models, through random process switching to different regimes, allow 
the differentiation of periods corresponding to different levels of volatility of 
the endogenous variable (Stawicki, 2004). Hamilton and Susmel (1994) pro-
posed the integration of these two approaches by introducing a random regime 
switching in the conditional variance equation of the ARCH model (Markov-
switching ARCH, SWARCH). A generalised version of the SWARCH model is 
the GARCH model with a regime switching (MS-GARCH), which makes it 
possible to provide a more detailed description of the dynamics of the variance 
process which differs across the regimes (Frömmel, 2004). 
In this paper we present theoretically different specifications of Markov-
switching models, which take into consideration the autoregressive dependen-
cies both in the conditional mean and in the conditional variance of process. In 
the empirical section of this paper the Markov-switching models for daily prices 
of electric energy in Poland are estimated and tested.  

2. General Overview of the Markov-Switching Model 
Hamilton (1990) proposed a form of the Markov-switching model MS(N)-
AR(p) which describes the changes of the mean and the variance of autoregres-
sive economic process across the regimes: 

tptsptstsst yyycy
tttt

εφφφ +++++= −−− ,2,21,1 ... , (1) 
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nowhere: tst u
t

σε =  for ut ~ IID(0,1), ts  - denotes a first-order homogeneous 
Markov chain with N states and transition probabilities matrix [ ]

NNijpP
×

= , 

ti,s ,φ
tsc - parameters depend on the state variable st . 

Hamilton (1994) formulates the following relation for the conditional distribu-
tion of the state variable st: 
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where the form of the density function of conditional distribution of the variable 
yt depends on the density function g(.) of the postulated distribution of the inno-
vations (Doman, 2005):1 
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The generalisation of the Markov-switching model of the form (1) consists in 
including an additional exogenous variable into a model. In such a case the ma-
trix form of model is following (Kaufmann, 2000): 

tstt t
Xy εβ += ,       tε ~ IID ( )

tSσ,0 , (4) 

where: tX = (1, yt-1,..., yt-p, xt,..., xt-q) – vector of observable variables, which 
may contain lagged both endogenous and exogenous variables, 

),...,,,,...,,,( ,,1,0,,2,1 tttttttt sqssspsss
T

s c ψψψφφφβ =  – parameters vector, which 
depends on the state variable st . 

3. GARCH Structure for Markov-Switching Models 
The econometric literature provides the descriptions of various possible specifi-
cations of the conditional variance equation for the MS-GARCH model, which 
generalize the GARCH (p, q) model by allowing for regimes with different 
volatility levels  (Gray, 1996; Klassen, 2002): 
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, βεαω , (5) 

                                                 
1 μt(j) and σt(j) are the conditional mean and the conditional standard deviation of 

the financial process respectively, dependent on the regime j, in which the process is 
found at a moment t. One can include the autoregressive scheme in the conditional 
mean equation depending on the properties of the modelled series. In empirical research 
it is frequently assumed that innovations have the following distributions: normal, Stu-
dent’s t-distribution, GED, skew Student’s t-distribution. 
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where: th – the variance of random term conditional on observable information 
Φt-1 and on the regime path ts~, 

tsω – the intercept depends on the state variable 

st, tsi,α  – the ARCH parameters depend on the state variable st, tsi,β  – the 
GARCH parameters depend on the state variable st. 
However, the estimation of the conditional variance parameter ht-1 in equation 
(5) causes problems of numerical nature, owing to the occurrence of path-
dependence which illustrates the entire history of process switching to particular 
regimes (Cai 1994 and Hamilton, Susmel 1994). This problem will be presented 
for the MS(2)-GARCH (1,1) model.  

 
Figure 1. The evolution of conditional variance in the GARCH model with a regime 

path-dependence 
Source: Gray S. F., Modeling the conditional distribution of interest rates as a regime – switching 
process, Journal of Financial Economics 3/1996, p. 35. 

Each conditional variance (concerning the model with path-dependence) de-
pends not only on the current regime, but also on the entire history of the proc-
ess which controls the switches between different volatility regimes, which is 
reflected by the branching nodes of the above tree.  
In the subsequent specification, the conditional variance was made dependent 
only on the current regime st and not the entire path 1

~
−ts , through having intro-

duced an expected value operator into the expression (5) (Gray, 1996): 

][ 12
2

1 −−− ++= ttstsst hEh
ttt

βεαω , (6) 

where: 

2
22112112

2
221

11
2
121

2
212

2
11

})2()1({)()2(

)()1(])[(][

μμμ

μ

⋅Φ=+⋅Φ=−+⋅Φ=+

++⋅Φ==Φ−Φ=

−−−−−−−

−−−−−−−−

ttttttt

tttttttt

sPsPhsP

hsPyEyEh
 (7) 

Figure 2 illustrates the evolution of conditional variance in the MS-GARCH 
model without a regime path-dependence. 
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Figure 2. The evolution of conditional variance in the GARCH model without a regime 

path-dependence 
Source: Gray S. F., Modeling the conditional distribution of interest rates as a regime – switching 
process, Journal of Financial Economics 3/1996, p. 36. 

In any given period, as a consequence of the conditional variances (ht/i for 
i=1,2) integration, a conditional variance (ht) is constructed relative to the set of 
observed data (Φt-1), not regimes, as it occurred in the previous specification. 
The described dependency is illustrated by the tree nodes which combine into  
a shared node in each subsequent step. The final specification of the conditional 
variance of the GARCH (1,1) model with a volatile regime can be presented in 
the form of the following equation:2 
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The problem of the occurrence of path-dependence in the conditional variance 
equation is of vital importance when computing multi-periods-ahead forecasts. 

4. Numerical Sample 
The empirical study has been conducted on daily spot quotations of electric 
energy on the Polish Energy Stock Market in the period between January 02, 
2004 and December 31, 2006. The form of Markov-switching model proposed 
by Hamilton and Susmel (1994) was estimated: 

t1tt uyy +⋅+= −ϕγ , (10) 

                                                 
2 The final specification of conditional variance for the GARCH model with a re-

gime –switching takes advantage of filtered probabilities, while in the previous specifi-
cation the ex-ante probabilities were applied (Klassen, 2002). 
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whereas for the innovation ut the SWARCH – L(3,2) specification was used: 
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where state variable st follows a first-order homogeneous Markov chain with 
three regimes. 
A likelihood function on the basis of the observations of the variable yt for t = 1, 
2, ..., T can be formulated: 
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The estimation of the parameters of this model has been performed in the Ox 
package, using the program codes written by Hamilton. 
The volatility clustering of the electric energy prices is explained by the fact 
that the periods of high volatility are followed by periods of low volatility. It is 
worth to wonder if a period of high volatility will be followed by normal vola-
tility level and, similarly, a period of low volatility will be followed by normal 
volatility level. So, we used different specifications of Markov switching 
ARCH model for describing the polish electric energy volatility process. The 
results in Table 1 show that variances in particular states differ from each other 
for each estimated switching model. For example, the results obtained for the 
SWARCH(2,0) model indicate that the variance corresponding to the second 
regime is over five times higher than the variance which characterises the first 
regime. It is also worth to observe that the probabilities of remaining in the 
states of high-, and low-volatility are significantly large, which is reflected by 
the effect of variance grouping in series of returns of energy prices. Similar 
results were obtained for the SWARCH-L(3,2) model.  
In the case of the first specification of the switching model, in which the model-
ling of the financial leverage effect was left and a normal distribution of the 
random parameter was assumed, an atypical estimate of variance in normal-
volatility regime was obtained. Moreover, the estimates of switching probabili-
ties for the Markov chain indicate a lower stability of particular regimes in 
comparison to the remaining models. In the case of SWARCH(3,2) and 
SWARCH-L(3,2) models, the estimates of parameter vectors are significantly 
different from each other, what may be connected with some numerical prob-
lems (the Hessian matrix is not positive definite, so the conclusion may be that 
either local maximum has not been found or the estimates are up against boun-
dary condition). 
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(the following dependency must be satisfied: ( ) 5,0;1 >Φ= θTtsP and 
( ) 5,0;11 <Φ=+ θTtsP ) and vice versa. 

Figure 3 plots the estimated smoothed probabilities of being in the low and high 
volatility regime, as defined in (2). 
On the basis of the computed residuals it was possible to verify the hypotheses 
concerning the dynamic specification of particular models. The values of par-
ticular testing statistics are presented in Table 2.  

Table 2. Diagnostics for dynamic specification of Markov switching model 

Test SWARCH(3,2) SWARCH-L(3,2) SWARCH(2,0) 

Ljung-Box test 311.9 331.9 313.5 
Jarque-Bera test 174.3 163.1 186.7 
ARCH effect test 84.6 85.5 94.1 

AIC -3325.7072 -3305.9939 -3350.0826 
SC -3353.1972 -3338.4839 -3365.0781 

The results presented in Table 2 confirm that the residuals of given models do 
not have white noise properties, i.e. they are correlated and conditionally het-
eroscedastic, and their distributions significantly differ from the normal distri-
bution. 
The transition probability values are the starting point for determination of the 
expected duration of regime i (Hamilton, Susmel, 1994): 

iip
id

−
=

1
1)( , (13) 

The analysis of the information included in Table 1 leads to the finding that 
state 1 (low volatility level) is expected to last on average for 12 days, while 
state 2 (high volatility level) typically – for 5 days. 

4. Conclusions 
To conclude, attention ought to be paid to the following properties of the 
GARCH model with a regime-switching: 
- the structure of the ARCH and GARCH model allows to take into considera-

tion the effect of conditional heteroscedasticity which differs significantly 
across the regimes. 

- higher flexibility of the model with regard to the persistence of shocks in 
volatility level3, 

                                                 
3 Not all the disturbances which occur on the market have permanent influence on 

the level of prices. Owing to a suitable construction of these models, the stability of this 
kind of disturbances may be reduced by means of switching to a regime with a lower-
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Analyzing the results of the empirical study which concerned the modeling of 
market prices of electric energy the following conclusions may be formulated. 
The specification of equation for both the conditional mean and conditional 
variance should be improved. The series of returns of electric energy prices are 
subject to periodic fluctuations due to the specific character of electric energy as 
a commodity traded on the stock exchange. The autoregressive structure of first 
order considered in models in question turned out to be insufficient for the de-
scription of the underlying dependencies. As a consequence, in further research 
the higher-order autocorrelation should be taken into account and the ARCH 
structure should be replaced by the GARCH structure with a volatile regime. 
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volatility level, which in turn results in a particular piece of information being quickly 
delivered “outside the market”. 


